



**Teacher Edition** 





## Correlations by Lesson to the UTAH Academic Standards for Science Grade 6

| <b>Standard 6.1.1</b> Develop and use a model of the Sun-Earth-Moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and Moon, and seasons. Examples of models could be physical, graphical, or conceptual.                                                                                                                                                                                                                                         | Student Edition:<br>2-37<br>Encounter/Explain the Phenomenon 1, 16, 27<br>Investigations 18-19, 33<br>Labs 22, 29, 31<br>STEM Project: Patterns in the Sky 38-40                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Standard 6.1.2</b> Develop and use a model to describe the role of gravity and inertia in orbital motions of objects in our solar system.                                                                                                                                                                                                                                                                                                                                   | Student Edition:<br>44-55<br>Encounter/Explain the Phenomenon 45<br>Investigations 46, 50<br>Labs 48<br>STEM Project: Wanted: Space Investigator 72-74                                                                                                             |
| <b>Standard 6.1.3</b> Use computational thinking to analyze data and determine the scale and properties of objects in the solar system. Examples of scale could include size and distance. Examples of properties could include layers, temperature, surface features, and orbital radius. Data sources could include Earth and space-based instruments such as telescopes and satellites. Types of data could include graphs, data tables, drawings, photographs, and models. | Student Edition:<br>57-71<br>Encounter/Explain the Phenomenon 57<br>Investigations 59-60, 65, 68<br>Labs 61-63<br>STEM Project: Wanted: Space Investigator 72-74                                                                                                   |
| <b>Standard 6.2.1</b> Develop models to show that molecules are made<br>of different kinds, proportions and quantities of atoms. Emphasize<br>understanding that there are differences between atoms and molecules,<br>and that certain combinations of atoms form specific molecules. Examples<br>of simple molecules could include water ( $H_2O$ ), atmospheric oxygen ( $O_2$ ),<br>and carbon dioxide ( $CO_2$ ).                                                         | Student Edition:<br>88-95, 124-139<br>Encounter/Explain the Phenomenon 125<br>Investigations 91, 93, 130, 132, 133<br>Labs 131<br>STEM Project: Cycling Across the States 140-144                                                                                  |
| <b>Standard 6.2.2</b> Develop a model to predict the effect of heat energy on states of matter and density. Emphasize the arrangement of particles in states of matter (solid, liquid, or gas) and during phase changes (melting, freezing, condensing, and evaporating).                                                                                                                                                                                                      | Student Edition:<br>79-87, 96-111, 148-165, 177-179, 186-193, 199-200<br>Encounter/Explain the Phenomenon 79, 97, 149, 167<br>Investigations 84, 101, 104, 155, 178<br>Labs 99<br>STEM Project: Cycling Across the States 140-144,<br>Cookin' with the Sun 208-210 |
| <b>Standard 6.2.3</b> Plan and carry out an investigation to determine the relationship between temperature, the amount of heat transferred, and the change of average particle motion in various types or amounts of matter. Emphasize recording and evaluating data, and communicating the results of the investigation                                                                                                                                                      | Student Edition:<br>168-176, 180-181<br>Investigations 152, 157, 158, 170, 172, 176, 199<br>Labs 150, 160-161, 168-169, 185, 187, 189, 203<br>STEM Project: Cookin' with the Sun 208-210                                                                           |

| <b>Standard 6.2.4</b> Design an object, tool, or process that minimizes<br>or maximizes heat energy transfer. Identify criteria and constraints,<br>develop a prototype for iterative testing, analyze data from testing, and<br>propose modifications for optimizing the design solution. Emphasize<br>demonstrating how the structure of differing materials allows them to<br>function as either conductors or insulators. | Student Edition:<br>198-207<br>Labs 198, 203                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Standard 6.3.1</b> Develop a model to describe how the cycling of water through Earth's systems is driven by energy from the Sun, gravitational forces, and density.                                                                                                                                                                                                                                                       | Student Edition:<br>214-237<br>Encounter/Explain the Phenomenon 215, 227, 235<br>Investigations 231<br>Labs 218, 221, 228<br>STEM Project: Dinosaurs and Dew 238-240                          |
| <b>Standard 6.3.2</b> Investigate the interactions between air masses that cause changes in weather conditions. Collect and analyze weather data to provide evidence for how air masses flow from regions of high pressure to low pressure causing a change in weather. Examples of data collection could include field observations, laboratory experiments, weather maps, or diagrams.                                      | Student Edition:<br>280-299<br>Encounter/Explain the Phenomenon 281<br>Investigations 285, 287, 288, 289, 292<br>Labs 284, 294-295<br>STEM Project:                                           |
| <b>Standard 6.3.3</b> Develop and use a model to show how unequal heating of the Earth's systems causes patterns of atmospheric and oceanic circulation that determine regional climates. Emphasize how warm water and air move from the equator toward the poles. Examples of models could include Utah regional weather patterns such as lake-effect snow and wintertime temperature inversions.                            | Student Edition:<br>248-249, 264-274, 301-305<br>Encounter/Explain the Phenomenon 265<br>Investigations 267, 268, 269, 303<br>Labs 248, 266, 272<br>STEM Project: As the Water Churns 318-320 |
| <b>Standard 6.3.4</b> Construct an explanation supported by evidence for the role of the natural greenhouse effect in Earth's energy balance, and how it enables life to exist on Earth. Examples could include comparisons between Earth and other planets such as Venus and Mars                                                                                                                                            | Student Edition:<br>257-258<br>Investigations<br>Labs 259-260                                                                                                                                 |
| <b>Standard 6.4.1</b> Analyze data to provide evidence for the effects of resource availability on organisms and populations in an ecosystem. Ask questions to predict how changes in resource availability affects organisms in those ecosystems. Examples could include water, food, and living space in Utah environments.                                                                                                 | Student Edition:<br>374-381<br>Encounter/Explain the Phenomenon 371<br>Investigations 376<br>Labs 374<br>STEM Project: The Fox and the Hare 408-410                                           |
| <b>Standard 6.4.2</b> Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems. Emphasize consistent interactions in different environments, such as competition, predation, and mutualism.                                                                                                                                                                                 | Student Edition:<br>382-393<br>Encounter/Explain the Phenomenon 383<br>Investigations 384, 385, 389<br>Labs 387<br>STEM Project: The Fox and the Hare 408-410                                 |

## Continued from previous page.

| <b>Standard 6.4.3</b> Develop a model to describe the cycling of matter<br>and flow of energy among living and nonliving parts of an ecosystem.<br>Emphasize food webs and the role of producers, consumers, and<br>decomposers in various ecosystems. Examples could include Utah<br>ecosystems such as mountains, Great Salt Lake, wetlands, and deserts.                                                                                                                                                                              | Student Edition:<br>324-325, 329, 335, 338-363<br>Encounter/Explain the Phenomenon 325, 339, 353<br>Investigations 340, 342<br>Labs 344, 347, 355, 358<br>STEM Project: Sun Block 364-366 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Standard 6.4.4</b> Construct an argument supported by evidence that the stability of populations is affected by changes to an ecosystem. Emphasize how changes to living and nonliving components in an ecosystem affect populations in that ecosystem. Examples could include Utah ecosystems such as mountains, Great Salt Lake, wetlands, and deserts.                                                                                                                                                                             | Student Edition:<br>394-407<br>Encounter/Explain the Phenomenon 395<br>Investigations 396, 399, 402, 404<br>Labs 400<br>STEM Project: The Fox and the Hare 408-410                        |
| <b>Standard 6.4.5</b> Evaluate competing design solutions for preserving ecosystem services that protect resources and biodiversity based on how well the solutions maintain stability within the ecosystem. Emphasize obtaining, evaluating, and communicating information of differing design solutions. Examples could include policies affecting ecosystems, responding to invasive species or solutions for the preservation of ecosystem resources specific to Utah, such as air and water quality and prevention of soil erosion. | Student Edition:<br>438-451<br>Encounter/Explain the Phenomenon 439<br>Investigations 445<br>Labs 444<br>STEM Project: Good "greef"! The corals are dying<br>451-453                      |